This question paper contains 4 printed pages] Roll No. S. No. of Question Paper : 39 Unique Paper Code : 32171101 Name of the Paper : Inorganic Chemistry–I Name of the Course : B.Sc. (H) Chemistry

Duration : 3 Hours

Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all.

Question No. 1 is compulsory.

1. Explain any five of the following with suitable reason : 5×3

- (a) Which is more covalent : NaCl or Nal ?
- (b) Which has the greater bond dissociation energy : $O_2 \text{ or } O_2^+$?
- (c) All the three N-O bonds in NO_3^- are equal.
- (d) Shape of dz^2 orbital is different from other *d*-orbitals.
- (e) BeCl₂ has zero dipole moment while H₂S has some value.
- (f) Which has greater melting point : o-nitrophenol or p-nitrophenol ?

P.T.O.

(a) Calculate the lattice energy of MgO (in $kJmol^{-1}$):

2.

3.

4.

- Given : A = 1.7475; $r (Mg^{2+}) = 0.65$ Å; $r (O^{2-}) = 1.40$ Å; $n = 7; e = 4.8 \times 10^{-10}$ e.s.u.; N = 6.02 × 10²³.
- (b) Define resonance energy and draw the resonating structures of NO_3^- and N_3^- .
- (c) Are 5g and 6h sub-shells possible ? Give reasons. If they are possible, show how many orbitals can be present in each sub-shells ?
 4,4,4
- (a) Give Allred and Rochow's scale of electronegativity.
 Calculate the electronegativity of silicon atom using this scale. The covalent radius of Si atom is 1.175 Å.
 - (b) What are isoelectronic ions ? How effective nuclear charge affects the radii of isoelectronic ions : N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺ ?
 - (c) The dipole moment of LiH is 1.964×10^{-29} Cm and bond length for LiH is 1.596 Å. What is the percent ionic character in LiH ? (Charge on one electron = 1.6×10^{-19} C). 4,4,4
- (a) How do you arrive at Schrodinger wave equation forH-atom starting with simple sine wave equation ?
 - (b) Using Slater's rule, calculate Z* for :
 - (i) 3d
 - (ii) 4s electron in Co atom (Z = 27).

(c) Explain the shapes of the following molecules/ions according to VSEPR theory:

$$I_3^-, H_2O, BrF_2^+, ICI_4^-.$$
 4,4,4

- (a) Draw the MO energy level diagram for N_2^+ . Discuss its bond order and magnetic behaviour. Why is the bond order in N_2^+ less than in N₂ molecule ?
 - (b) What are the four special properties which an acceptable wave function must have ? Why these restrictions are reasonable ?
 - (c) Using Pauling's method, calculate the radii of Na⁺ and F⁻ ions. The observed internuclear distance in NaF crystal is 213 pm.
 4,4,4
- (a) Taking Z-axis as nuclear axis, explain whether the following orbitals will overlap to form molecular orbitals
 - or not ?

5.

6.

- $(i) \quad s + p_x$
- (ii) $p_x + d_{xy}$
- (*iii*) $p_y + d_{x^2 y^2}$.

P.T.O.

- (b) Calculate the limiting radius ratio for the ionic compound when the coordination number of the cation is 4.
- (c) What is a radial distribution function ? Draw this function for 1s, 2p and 3s orbitals.
 4,4,4
- (a) Draw the Born-Haber cycle for the formation of CaCl₂ and explain the various terms involved.
 - (b) State Pauli's exclusion principle. Using this principle, calculate the number of electrons in L shell.
 - (c) Define electronegativity. How the electronegativity varies with s-character in different hybridisation of organic compounds ? 4.4.4
- 8. Write short notes on any three of the following :
 - (i) Bent's Rule
 - (ii) Band theory of metallic bonding
 - (iii) Hund's rule of maximum multiplicity
 - (iv) Polarisation and polarisabilty.

4

3×4

1,800

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all.

Question No. 1 is compulsory.

Use of scientific calculator and log tables is allowed.

Physical constants : $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$, $N_A = 6.023 \times 10^{23} \text{ mol}^{-1}$, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$.

1. Attempt any *five* of the following : $5 \times 3 = 15$

Explain why :

(a) The end-centred bravais lattice is not possible for a cubic unit cell ? 40

- (b) The pH of water is not 7.0 at 60°C ? Will it remain neutral at this temperature ?
- (c) Irrespective of their nature, drops of all the liquids falling freely in air are spherical in shape ?
- (d) Addition of KNO₃ increases the surface tension of water but addition of detergent decreases it ?
- (e) CO and N₂ have the same speed distribution at the same temperature ?
- (f) The viscosity of gas increases with temperature but that of liquid decreases with temperature ?
- (g) The initial slope of the graph of compressibility factor,
 Z versus the pressure, p, at constant temperature is positive for some gases and negative for others ?
- (a) Write the mathematical expression for the Maxwell distribution of molecular speeds of a gas, explain briefly the terms involved. How does the change in temperature influence the distribution of molecular speeds ?

2.

(b) Calculate the temperature at which average velocity of SO₂ equals to that of O₂ at 20 K.

- 40
- (c) Derive the relations using van der Waals gas equation : $P_c = a/27b^2$ and $T_c = 8a/27Rb$. 4
- 3. (a) Explain the terms σ , λ , Z_1 and Z_{11} . Discuss the effect of temperature and pressure on these terms. 5
 - (b) Calculate λ , Z_1 and Z_{11} for oxygen at 298 K and 10⁻³ mmHg. Given $\sigma = 3.61 \times 10^{-8}$ cm. 4
 - (c) Write a note on continuity of state. 3
 - (a) Starting from the postulates of the kinetic theory of gases, derive the kinetic gas equation.

4.

5.

- (b) Calculate the pressure exerted by 3.023×10^{23} molecules of CH₄ in 0.5 dm³ at 298 K using van der Waals equation. (Given : a = 2.253 L² atm mol⁻², b = 0.0428 L mol⁻¹ and R = 0.0821 L atm mol⁻¹ K⁻¹).
- (c) What are the units of van der Waals constants a and b? Do these constants depend upon temperature of the gas?
- (a) Define the surface tension of liquid. Describe drop number method for the determination of surface tension of a liquid.

P.T.O.

(5)

- Give the Miller indices of the plane which intercepts (c) the three crystallographic axes at the multiple of unit distance at :
 - 3/2, 2, 1 (i)
 - 1/2, 2/3, ∞. (ii)4
- Show that the concentration of H3O⁻ in an aqueous (a)solution of an acid HA can be computed from the expression :

Under what conditions can the following expressions be used :

(i)
$$\mathbf{K}_{a} = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]^{2}}{\left[\mathbf{H}\mathbf{A}\right]_{0} - \left[\mathbf{H}_{3}\mathbf{O}^{+}\right]}$$

- (*ii*) $\mathbf{K}_a = \frac{\left[\mathbf{H}_3\mathbf{O}^+\right]^2}{\left[\mathbf{H}\mathbf{A}\right]_0}$. 5
- What is the pH of a solution containing 10⁻⁸ M (b)hydronium ion and compare it with the pH value of 10⁻⁸ M HCl solution ? 4
 - P.T.O.

40

With the given viscometer, the times of flow at 20°C (b) for water and an unknown liquid ($d = 1.22 \text{ g cm}^{-3}$) were found to be 155 sec and 80 sec respectively. Calculate the absolute viscosity of the unknown liquid at 20°C if viscosity and density of water are 1.005 centipoise and 1 g cm⁻³ respectively. 4 What is capillary action ? Derive : $\gamma = \pm \frac{1}{2}h\rho gr$, where (c) the symbols have their usual meanings. 4 What are the differences between crystalline and (a)amorphous solids ? 4 When a certain crystal was studied by the Bragg's *(b)* method using X-rays of wavelength 229 pm, first order

(4)

X-ray reflection was observed at an angle of 23°20' :

- What is corresponding inter-planar spacing ? (*i*)
- When another X-ray source was used, a reflection (ii)was observed at 15°26' ? What was the wavelength of these X-rays ? 4

40

7.

6.

- (c) What is pH of a solution obtained by mixing 50 mL, 0.1 M CH₃COOH and 50 mL, 0.1 M NaOH. Given pK_a (CH₃COOH) = 4.7.4. 3
- 8. (a) Show that the pH of an aqueous solution of salt formed from a weak acid and strong base is given by $pH = 7 + \frac{1}{2}(pK_a + \log c).$ 4
 - (b) Define different types of buffer solutions. Derive Henderson-Hasselbalch equation for pH of acidic and basic buffer.
 - (c) What is the solubility of $Ag_2(CrO_4)$ in water if the value of solubility product is $K_{sp} = 1.3 \times 10^{-11} M^3$? 4

(a) What is an indicator and how does it work? 3

- (b) Define solubility and solubility product. Determine solubility of Mg(OH)₂ in pure water and 0.01 M NaOH solution. K_{sp} of Mg(OH)₂ = 1.2×10^{-11} M³. 5
- (c) Will a precipitate form if 20 cm³ of 0.01 M AgNO₃ and 20 cm³ of 0.0004 M NaCl are mixed ? Given K_{sp} of AgCl = 1.7 × 10⁻¹⁰ M². 4

9.

1,800

Sl- No 07 9.1	2:1586	3)	5/12/18	1	
Unique Paper Code	: 217101 (CHHT-101)				
Name of the Paper	: Inorganic Chemistry-1 [Atomic Structure	e, Periodicity of		
	elements]	DAR		1	
Name of the Course	: B.Sc. (H) Chemistry	F			
Semester	:I 🔰 🔓 💵	RABY			
Duration: 3 Hours	E.	Max	imum Marks: 100		
Instructions for Candidate	<u>s</u>	an Ballais			
1. Write your Roll No. on the top immediately on receipt of this question paper.					

2. Attempt any six questions.

3. Question No. 1 is compulsory and carries 20 marks. All other questions carry equal marks.

1. (a) For the 4s and $3d_{xy}$ hydrogen-like orbitals, sketch the following:

i) Radial function R

ii) Radial probability distribution $4\pi r^2 R^2$

iii) Contour map of the electron density

(b) Give a short answer for the following

i) How many radial nodes does a 6f orbital have?

ii) Sketch the angular nodes in a 3dxy orbital

iii) Sketch the angular part of the wavefunction for the five d orbitals.

(c) Using Slater's Rules calculate Z* for the following elements:

i) Calculate the Z* for a 4s enlectron in Ca

ii) Calculate the Z* for a 4s enlectron in Sc

iii) Calculate the Z* for a 3d enlectron in Sc

(d) Answer the following:

i) Write the electron configuration for the following atoms or ions (you may use the noble gas shortcut):

Fe, Fe²⁺, Br, Ca²⁺, Se, I

ii) Write the chemical equation for 1st ionization energy and 1st electron affinity of V.

(6+3+3+8)

- 2. Explain the following:
 - (a) What is Bohr's theory of atomic structure and what are its limitations?
 - (b) The speed of a 1.0 g projectile is known to within 10⁻⁶ ms⁻¹. What is the minimum uncertainty in its position?

- (c) Write short notes on the following (any 4):
 - i) Significance of quantum numbers
 - ii) Radial and angular wave functions
 - iii) Difference between spin quantum number and magnetic quantum number
 - iv) Significance of ψ and ψ^2
 - v) Factors affecting energy of an orbital
- (d) Write Schrodinger equation of hydrogen atom and explain various terms in it.

(4+2+8+2)

- 3. (a) State Heisenberg's uncertainty principle and explain its significance.
 - (b) Calculate the de Broglie wavelength of a body of mass 1 kg moving with a velocity of 2000 ms⁻¹.
 - (c) What are three rules that govern the filling of electrons in atomic orbitals?
 - (d) What are normal and orthogonal wave functions?
 - (e) What is radial node? Calculate the number of radial nodes for 1s, 2s, 2p, 3d, 4f and 5d orbitals.

(2+2+3+2+7)

4. (a) Rank the following in order of increasing value for the property listed:

1 st Ionization Energy	Fe	Ru	V	<<
Atomic radii	S	Si	Sn	<<
Atomic/ionic radii	Fe	Fe ²⁺	Fe ³⁺	<<
Ionization energy	Fe	Fe ²⁺	Fe ³⁺	<<
Atomic radii	Cl	Br	Ι	<<

- (b) Define effective nuclear charge. What is the effective nuclear charge for a sodium ion (Na⁺), and a fluoride ion (F⁻).
- (c) What is the difference between atomic radius and ionic radius?
- (d) Do you agree that electronegativity of an element increases as s-character increases in the hybrid orbitals of its atom? Explain briefly.
- (e) Explain the trends in variation of valency in groups and periods of s and p block of elements.

(5+3+3+2+3)

- 5. (a) Define Ionization Energy. What are the factors affecting ionization energy?
 - (b) Why do Li and Mg show similar behaviour?
 - (c) Explain electronegativity briefly in terms of Pauling's and Mulliken's scale.
 - (d) Write a short note on inert pair effect.

(e) What is electron gain enthalpy? List the factors affecting electron gain enthalpy.

(4+2+3+2+5)

- 6. (a) What is the variation in electronegativity with bond order?
 - (b) Why is cesium atom bigger than sodium atom?
 - (c) Explain hybridization and shapes of the following species:

ClF3, I3, XeF4, SF4, H2O

 (d) In Group I, elements have 2nd ionization energy much higher than 1st ionization energy. Explain.

(2+2+10+2)

- 7. (a) Explain briefly the trends in ionization energy along a period and down a group.
 - (b) Explain the concept of inert pair effect taking Group 14 elements as an example.
 - (c) What are the different scales of electronegativity? Explain briefly.
 - (d) Fluorine is the most electronegative element in the periodic table but its electron affinity is lower than that of chlorine. Explain.
 - (e) Why is the atomic radius of noble gases more than the halogens?

-

(2+4+4+3+3)

(1- NO.9)	Q.P.	+81587	(4)	8/12/18	8112
Unique Paper Code	3	217103			
Name of the Course	:	B.Sc(H) Chem	istry	-	
Name of the Paper	BARBHU	COLUHT-102: Or	rganic Chemist	ry-l	
Semester					
Time : 3hrs	LIBRA		Maximum Mar	·ks : 75	
Instructions for Candidates	Har. No	" Delle			
				i .	

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Answer any six questions. Question No 1 is compulsory.
 - 1. Attempt any *five*

3x5=15

3

- (a) Alkynes are less reactive than alkenes towards electrophilic adition reactions. Why?
- (b) p-chloronitrobenzene has less dipole moment (2.4D) than p-nitrotoluene (4.4D) Explain.
- (c) Classify the following into electrophiles and nucleophiles with explanation SF₄, BF₃, NH₃, SO₃, :CCl₂, CH₃CH₂⁻
- (d) Why does propene react with HBr in presence of peroxides to give 1-bromopropane whereas in absence of peroxides it gives 2-bromopropane?
- (e) Arrange the following in increasing order of their stability and give reason in support of your answer

(CH₃)₃C⁺, CH₃⁺, C₆H₅CH₂⁺, CH₃CH₂⁺

(f) Arrange the following in the increasing order of basic strength. Give reasons for your gnswer:

- 2. (a) Write Newman Projection for the Chair and Boat conformations of cyclohexane. 3
 - (b) Phenol is more acidic than alcohols but less acidic than carboxylic acids. Explain. 2
 - (c) Why is nitration of toluene much faster than nitration of toluene? Name the product(s) formed in each case.
 - (d) With the help of mechanism explain Friedal Crafts Alkylation in benzene.

3. (a) What is aromaticity? Giving suitable reason explain which of the following compound 5 is/are aromatic

- (b) Explain Baeyer strain theory.
- (c) Although halogens are deactivating in aromatic electrophilic substitution but are ortho 2 and para directors
- (d) Draw the Newman projection for different conformations possible for butane. Discuss 3 their stability.
- 4. (a) Assign E/Z configuration of the following

3

3

3

3

2

(b) Assign R and S configuration of the following

- (c) Giving reason, arrange the following in increasing order of acidity Benzoic acid, o-hydroxybenzoic acid, p-hydroxybenzoic acid
- (d) Benzyl radical is more stable than allyl radical. Explain
- 5. (a) A hydrocarbon of formula C_6H_{12} decolorizes bromine solution, dissolves in concentrated sulphuric acid, yields 2-methylpentane on the hydrogenation, and on

ozonolysis gives formaldehyde and 3-methylbutanal. What is the structure of the hydrocarbon? Give all the reactions involved.

(b) How will you convert:

- i. But-1-ne to but-2-ene
- ii. Propyne to cis but-2-ene
- iii. Benzene to m-nitrobenzoic acid
- iv. Propyne to cis-but2-ene
- 6. Write short notes on the following: (any four)
 - (a) Diel's Alder Reaction
 - (b) Stability of cycloalkanes
 - (c) Hydroboration-oxidation reactions of alkene
 - (d) Hofmann elimination
 - (e) Wurtz reaction

2x4 = 8

3x4 = 12

ŧ-

12/12/18

(This Question Paper contains____ printed pages)

Roll No.

Sr. No. of Question Paper:

Unique Paper Code:

Name of the Course:

Name/ Title of the paper:

Semester/ Annual;

Duration:3Hours

Max. Marks: 75

Instructions for candidates

There are three Sections in this question paper. Attempt any two questions from each Section. Students are allowed to use scientific calculator.

1588

235164 (MACT-101)

B.Sc. (H) Chemistry - I

Mathematics - 1

Semester-1

SECTION - A

- Find the volume of a rectangular object whose length is given as 7.78 m, whose <u>Q1.</u> (a) (i) 3^{1}_{-} width is given as 3.486 m, and whose height is 1.376 m, to the proper number of significant digits.
 - (ii)Show that $\ln(y) = (2.302585...)\log_{10} y$.
 - (b) (i) Solve the quadratic equation $x^{2}+2x+2=0$.
 - Manipulate the equation $(P + n^2 a / V^2) (V n b) = n R T$, so that V_m , defined as (ii)3 V/n, occurs instead of V & n occurring separately.

Q2. (a) Write the simpler form of
$$\frac{2}{17} \frac{(x^2+2x)^2-x^2(x-2)^2+12x^4}{6x^3+12x^4}$$
. $6\frac{1}{2}$

- Two time intervals have been clocked as 56.57 s \pm 0.13 s and 75.12 s \pm 0.17 s, 3 (b) (i) Find the probable value of their sum and its probable error.
 - Find the expression for the propagation of error for Dumas molar mass (ii)3
- Find the square root of 5 by Newton-Raption Method up to four decimal places. <u>Q3.</u> (a) $6\frac{1}{2}$ (b)

Evaluate $\lim_{x \to 0} \frac{x^2 + \sin 3x}{2x + \tan 2x}$.

<u>Q4.</u>

(a)

6

5

5

3

3

SECTION - B

Find the Maclaurin's series for the function : $f(x) = tan^{-1}x$. (b) Test for convergence the series $\sum_{n=0}^{\infty} \frac{3.6.9...3n}{7.10.13...(3n+4)} x^n, x > 0.$

- Find the radius of convergence and the interval of convergence of the power (c) 5 series : $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \chi^n$.
- Prove that the length of the perpendicular from the foot of the ordinate on any (a)5 tangent to the curve $y = c \cosh\left(\frac{x}{c}\right)$ is constant.
- Estimate the percent change in the pressure of 1.000 mol of an ideal gas at 0 $^{\circ}$ (b)5 C when its volume is changed from 22.4141 to 21.4141 using the formula

$$\Delta P \approx \left(\frac{dP}{dV}\right) \Delta V.$$

(c) If x = sin t, y = sin pt; prove that
$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0..$$
 5

- Find the maximum and minimum values of the function **(a)** $f(x) = 4x^{-1} - (x-1)^{-1}$ for all $x \in \mathcal{R} \sim \{0,1\}$.
- Show that points of inflexion of the curve $y^2 = (x a)^2(x b)$ lie on the line (b) 5 $3\mathbf{x} + \mathbf{a} = 4\mathbf{b}.$

(c) Evaluate
$$\lim_{x\to 0} \frac{1-\cos x^2}{x^2 \sin x^2}$$

SECTION-C

Evaluate the integrals

 $\int x^3 \ln(x^2) dx$ $\int^{\pi} Sin[Cos(x)]Sin(x)dx$

 $2\frac{1}{2}$

 $2\frac{1}{2}$

5

5

(ii)

b) If
$$z = \tan^{-1}(\frac{x^3 + y^3}{x - y})$$
 show that $\frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = Sin(2z)$.

Q8. (a)

(

Show that the differential: du = dx + xdy is inexact and carry out the line integral from (0,0) to (2,2) by two different paths: path1, the straight line segment from (0.0) to (2,2); and path 2, the rectangular path from (0,0) to (2,0)and then to (2,2)

(a)

If $x = \sin t$, $y = \sin pt$, prove that $(1 - x^2)\frac{d^2y}{dx^2} - x$. When a gas expand reversely, the work that it does on its surrounding is given

Evaluate $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$ if $u(x, y) = ye^{-x} + xy$. $\therefore \qquad x(s, t) \doteq s^2 t$ and $y(s, t) = e^{-s} + t$.

by the integral

 $W_{surr} = \int_{v_1}^{v_2} P dV$, Where V_1 is the initial volume, V_2 the final volume, and P the pressure of the gas. Certain non ideal gases are described quite well by the van der Waals equation of state,

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

Where V is the volume, n is the amount of gas in moles, T is the temperature on-the Kelvin scale, and 'a' and 'b' are constants. R is usually taken to be the

- (i)
 - Obtain a formula for the work done if 1.00 mole of such gas expands reversely at constant temperature from a volume V_1 to the volume V_2 . (ii)

Calculate the work done in the process if the gas is assumed to be ideal.

Using Trapezoidal approximation with five panels, calculate the value of the (b) integral $\int_{10}^{20} 2x^2 dx$. Calculate the exact value for comparison. 5

 $2\frac{1}{2}$

 $2\frac{1}{2}$